Как находить область значения функции

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= ( ∞; +∞)//всё мн-во действит.чисел

3. D (у)= ( ∞; +∞)//всё мн-во действит.чисел

4. D (у)= [0; +∞)// мн-во неотрицат.чисел

Зависимая переменная (кот. мы обозначаем у ) имеет название значение функции.

Область значения функции

Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) или E (y).

Рассмотрим Е (у) для 1.,2.,3.,4.

1. Е (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. Е (у)= [0; +∞)// мн-во неотрицат.чисел

3. Е (у)=( ∞; +∞)//всё мн-во действит.чисел

4. Е (у)= [0; +∞)// мн-во неотрицат.чисел

Рассмотрим примеры подробнее

1) Постановка задачи. Найти функции у= 4х/(3+х)

1. Найдем D (у)//т.е. какие значения может принимать х. для этого найдем ОДЗ(область допустимых значений дроби)

значит D (у) данной функции ( ∞; 3) и (3;+∞)// всё множество действительных чисел, кроме 3.

2. Найдем Е (у)//т.е. какие значения может принимать у, при всех возможных х

решаем уравнение вида 4х/(3+х)=А, где А є Е (у)

значит Е (у) данной функции ( ∞; 4) и (4;+∞)// всё множество действительных чисел, кроме 4.

2) Постановка задачи. Найти D (у)и Е (у) функции, изображенной на графике

Область определения(значения х) смотрим по оси х- это промежуток [ 4; 7],

Областью значения(значения у) смотрим по оси у- это промежуток [ 4; 4].

Нужна помощь в учебе?

Предыдущая тема: Графический способ решения уравнений: алгоритм и примеры графиков
Следующая тема:&nbsp&nbsp&nbspСвойства функции: разбираем на примере

Все неприличные комментарии будут удаляться.

Как найти область значения функции?

Функцию можно построить по точкам: подставлять в формулу значение переменной и ставить на графике соответствующие точки. Но при этом нет никакой гарантии, что вы не пропустите точку экстремума или разрыва. Да и процесс это долгий и нудный. Поэтому гораздо рациональнее найти область определения, область значений и все критические точки функции. Поговорим об этом подробнее.

Что такое область значения функции

Область значения функции y=f(x) – это множество всех значений функции, которые она принимает при переборе всех значений х из области определения х € Х. Обозначается область значения как Е y=f(x).

Про область определения написано в статье Как найти область определения функции. Эти две области иногда путают, что недопустимо. Чтобы лучше понять, что это такое, рассмотрим конкретные примеры.

Например, функция y=f(x)=sinx. Для наглядности можно нарисовать синусоиду. Тогда мы увидим, что х может изменяться от -∞ до +∞, y=f(x) определена при х € -∞; +∞. При этом f(x) изменяется от -1 до +1, других значений она не принимает. Значит, область определения функции х € -∞; +∞, область значения Е у = -1; +1. Т.е. область определения – это значения х, при которых функция существует. А область значения – это те значения функции, которые она принимает во всей области определения.

Рассмотрим другой простой пример: у=1/х. Рисовать гиперболы мы тоже умеем и знаем, что при х=0 значение функции не определено, т.е. в этой точке она не существует. При х=0 мы имеем разрыв функции. Значит, область определения х € (-∞

Как найти область значения функции

Лекция 19. Функция. Область определения и множество значений функции.

Функция — одно из важнейших математических понятий.

Определение: Если каждому числу из некоторого множества x поставлено в соответствие единственное число y, то говорят, что на этом множестве задана функция y(x). При этом x называют независимой переменной или аргументом, а y — зависимой переменной или значением функции или простофункцией.

Говорят также, что переменная y является функцией от переменной x.

Обозначив соответствие некоторой буквой, например f, удобно писать: y=f (x), то есть, значение y получается из аргумента x с помощью соответствия f. (Читают: y равно f от x.) Символом f (x) обозначают значение функции, соответствующее значению аргумента, равному x.

Пример 1 Пусть функция задается формулой y=2×2–6. Тогда можно записать, что f(x)=2×2–6. Найдем значения функции для значений х, равных, например, 1; 2,5;–3; т. е. найдем f(1), f(2,5), f(–3):

Заметим, что в записи вида y=f (x) вместо f употребляют и другие буквы: g, и т. п.

Определение: Область определения функции — это все значения x, при которых существует функция.

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.

Другими словами, область определения функции, заданной формулой, является все значения аргумента, за исключением тех, которые приводят к действиям, которые мы не можем выполнить. На данный момент мы знаем только два таких действия. Мы не можем делить на нуль и не можем извлечь квадратный корень из отрицательного числа.

Определение: Все значения, которые принимает зависимая переменная образуют область значения функции.

Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой , где l начальная длина стержня, а —коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t. Однако, областью определения функцииl=g(t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.

Укажите область значений функции y = arcsinx.

Областью определения арксинуса является отрезок [-1; 1]. Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1), то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1, а наибольшее при x = 1.

Мы получили область значений функции арксинуса .

Найдите множество значений функции на отрезке [1; 4].

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку [1; 4]:

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является интервал .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) на открытых интервалах (a; b), .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем односторонние пределы на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах открытого интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Область значений функции

Область значений (или множество значений) функции — множество, состоящее из всех значений, которые принимает функция[1][2][3].

Определение

Пусть на множестве X задана функция f , которая отображает множество X в Y , то есть: f : X → Y . Тогда областью (или множеством) значений функции f называется совокупность всех её значений, которая является подмножеством множества Y и обозначается f ( X ) :

Множество значений функции f обозначается также символами E ( f ) , R ( f ) или r a n f ,f> (от англ. range).

Терминология

В некоторых источниках различаются понятия области значений и множества значений функции. При этом областью значений функции называют её кодомен, то есть множество Y в обозначении функции f : X → Y [4], сохраняя термин множество значений для обозначения совокупности всех значений функции f .

Множество значений f ( X ) называется также образом множества X при отображении f .

Иногда множество значений функции называют множеством всех значений или областью изменения функции[3].

Как найти область определения функции и область значения. приведите пример и опишите подробнее пожалуйста

Маря

Каждая функция содержит два типа переменных: независимую переменную и зависимую переменную. Например, в функции y = f(x) = 2x + y «х» является независимой переменной, а «у» — зависимой переменной. Область определения функции — это множество чисел, на котором задается функция (другими словами, это те значения «х», которые можно подставить в данное уравнение). Область значений функции – все значения, которые принимает функция в ее области определения (другими словами, это те значения «у», которые вы получаете при подста
Если функция задана дробным выражением, найдите корни выражения, стоящего в знаменателе. Для этого приравняйте выражение, стоящее в знаменателе, к нулю и найдите «х».
1,Пример: дана функция е (х) = х + 5 / х — 2. Эта функция задана дробным выражением. Найдите корни выражения в знаменателе: х – 2 = 0; х = 2.новке всех возможных значений «х»).
2.
Запишите область определения функции. После нахождения корней выражения в знаменателе запишите область определения функции в математической форме.
В нашем примере знаменатель равен 0 при х = 2, следовательно х не может принимать значение 2 (так как на 0 делить нельзя). Область определения запишется в следующем виде: (-∞; 2)U(2; +∞).
Читается так: от минус бесконечности до двух и от двух до плюс бесконечности.
3.Нарисуйте координатную плоскость: проведите ось Х (горизонтально) и ось Y (вертикально).
4.
На осях координат нанесите числовые отметки (через равные промежутки).
5.Найдите точки графика. Для этого подставьте в данную функцию значения «х» (из области определения функции) и найдите значения «у».
В нашем примере подставьте любые значения «х», кроме 2, так как 2 исключена из области определения.
6.Отложите точки на координатной плоскости. Затем соедините их плавной линией.
7.
Найдите область значений функции. Для этого на координатной плоскости найдите такую горизонтальную прямую, которая не пересекается с графиком функции. Точка пересечения этой прямой и оси Y будет исключена из области значений функции.
В нашем примере прямая, заданная функцией у = 1, не пересекает график исходной функции. Следовательно «у» не принимает значение 1 и оно исключается из области значений функции. Математически область значений записывается так:
(-∞,1)U(1,+∞)
Читается так: от минус бесконечности до единицы и от единицы до плюс бесконечности.

Лира

Область определения функции это то множество значений, которые может принимать аргумент функции. Например, для y(x)=x/x-1 ООФ будет интервал от минус бесконечности до 1 и от 1 до плюс бесконечности (х не равно 1). Область значения функции это то множество значений, которое может принимать функция. Например, для y(x)=sin(x) ОЗФ это отрезок от -1 до 1.

Что такое область значения функции? мне нужно определение.

Катя

Множеством значений функции y = f(x) на интервале X называют множество всех значений функции, которые она принимает при переборе всех .
Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения .
Область значений функции обозначают как E(f).
Область значений функции и множество значений функции — это не одно и то же. Эти понятия будем считать эквивалентными, если интервал X при нахождении множества значений функции y = f(x) совпадает с областью определения функции.

Не путайте также область значений функции с областью допустимых значений функции (ОДЗ) . Область допустимых значений функции – это есть область определения функции.

Как найти область значений/изменений функции?

мб это и простейшее уравнение. но чтоөто для меня не доходит как решить. =Ь

Naumenko

области определения и значений функций отдельно
решение квадратных уравнений отдельно:
http://www.bymath.net/studyguide/alg/sec/alg21.html
ссылка на справочный сайт по элементарной математике.
выпишите формулы и решайте, аккуратно считая. решите пару сотен уравнений и будете знатоком этого дела.
Успеха!

Rideamus com

Область значения функций в задачах ЕГЭ

Разделы: Математика

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не до конца понятым. Особым камнем преткновения при изучении функции и подготовке к ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью её значений.
И если задачи на нахождение области определения функции учащимся удаётся освоить, то задачи на нахождение множества значений функции вызывают у них немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал, рассмотрены способы решения задач на нахождение множеств значений функции, подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к выпускным и вступительным экзаменам, при изучении темы “Область значения функции” на факультативных занятиях элективных курсах по математике.

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество таких чисел y, для каждого из которых найдётся такое число x, что: f(x) = y.

Напомним области значений основных элементарных функций.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x 2n E(y) = [0;+∞)
y = x 2n +1 E(y) = (-∞;+∞)
y = k/x E(y) = (-∞;0)u(0;+∞)
y = x 1/2n E(y) = [0;+∞)
y = x 1/2n+1 E(y) = (-∞;+∞)
y = a x E(y) = (0;+∞)
y = logax E(y) = (-∞;+∞)
y = sin x E(y) = [-1;1]
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2 ; π/2]
y = arcos x E(y) = [0; π]
y = arctg x E(y) = (-π/2 ; π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени является промежуток [m;+∞) , где m – наименьшее значение этого многочлена, либо промежуток

(-∞;n] , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать свойства основных элементарных функций, особенно их области определения, области значений и характер монотонности. Приведём свойства непрерывных, монотонных дифференцируемых функций, наиболее часто используемые при нахождении множества значений функций.

  1. Если функция f(x) непрерывна и возрастает на отрезке [a;b], то множество значений функции на этом отрезке есть отрезок [f(a),f(b)]. При этом каждое значение А [f(a),f(b)] функция принимает ровно при одном значении x принадлежит [a,b], т.е уравнение f(x) = А имеет единственный корень на отрезке [a,b]. Если же f(x) – непрерывная и убывающая на отрезке [a,b] функция, то её множество значений на [a,b] есть отрезок [f(a),f(b)].
  2. Если функция f(x) непрерывна на отрезке [a,b] и m = min f(x), M = max f(x) – её наименьшее и наибольшее значение на этом отрезке, то множество значений f(x) на [a,b] есть отрезок [m;M].
  3. Если функция непрерывна на отрезке [a,b] и дифференцируема (имеет производную) в интервале (a,b), то наибольшее и наименьшее значения функции на отрезке [a,b] существуют и достигаются либо на концах отрезка, либо в критических точках функции, расположенных на отрезке

Свойства 2 и 3, как правило, используются вместе свойством элементарной функции быть непрерывной в своей области определения. При этом наиболее простое и краткое решение задачи на нахождение множества значений функции достигается на основании свойства 1, если несложными методами удаётся определить монотонность функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение множеств значений функции следует по мере надобности проверять и использовать следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём ориентированны:

а) на использование простейших оценок и ограничений: (2 х >0, -1≤sinx?1, 0≤cos 2 x?1 и т.д.);

б) на выделение полного квадрата: х 2 – 4х + 7 = (х – 2) 2 + 3;

в) на преобразование тригонометрических выражений: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;

г) использование монотонности функции x 1/3 + 2 x-1 возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log0,5(4 – 2·3 x – 9 x ).

Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log0,5(5 – (1 + 2·3 x – 3 2x )) = log0,5(5 – (3 x + 1) 2 )

И последовательно найдём множества значений её сложных аргументов:

E(3 x ) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2 ) = (-∞;4)

Обозначим t = 5 – (3 x +1) 2 , где -∞≤t≤4. Тем самым задача сводится к нахождению множества значений функции y = log0,5t на луче (-∞;4). Так как функция y = log0,5t определена лишь при, то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) = [-6;6].

Пример 3. Найдите область значений E(f) функции f(x) = cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos 2 x + 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t 2 + 2t – 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством значений функции g(t) = 2t 2 + 2t – 1 на отрезке [-1;1], которое найдём графическим методом. Построив график функции y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 на промежутке [-1;1], находим E(f) = [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с параметром, связанные, в основном, с разрешимостью и числом решений уравнения и неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда, когда

a E(f) Аналогично, уравнение f(x) = а имеет хотя бы один корень, расположенный на некотором промежутке Х, или не имеет ни одного корня на этом промежутке тогда и только тогда, когда а принадлежит или не принадлежит множеству значений функции f(x) на промежутке Х. Также исследуются с привлечением множества значений функции и неравенства f(x)≠ а, f(x)>а и т.д. В частности, f(x)≠ а для всех допустимых значений х, если a E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5) 1/2 = a(x 2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5) 1/2 / (x 2 + 4) = a . Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только тогда, когда а принадлежит множеству значений функции f(x) = (x + 5) 1/2 / (x 2 + 4) на отрезке [-4;-1]. Найдём это множество, используя свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна, поэтому функция g(x) = 1/(x 2 + 4) непрерывна и возрастает на этом отрезке, так как при делении на положительную функцию характер монотонности функции меняется на противоположный. Функция h(x) = (x + 5) 1/2 непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция f(x)=g(x)·h(x), как произведение двух непрерывных, возрастающих и положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому её множество значений на [-4;-1] есть отрезок [f(-4); f(-1)] = [0,05; 0,4]. Следовательно, уравнение имеет решение на отрезке [-4;-1], причём единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х равносильна принадлежности значений параметра а множеству значений функции f(x) на Х. Следовательно, множество значений функции f(x) на промежутке Х совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В частности, область значений E(f) функции f(x)совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f) совпадает с множеством значений параметра а, для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом при неизвестной х , поэтому имеет решение. При а≠2 уравнение является квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

то искомым множеством значений параметра а, значит, и областью значений E(f) будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении множества значений функции, можно рассматривать метод обратной функции, для нахождения которой надо решить относительно х уравнение f(x)= y, считая y параметром. Если это уравнение имеет единственное решение x =g(y), то область значений E(f) исходной функции f(x) совпадает с областью определения D(g) обратной функции g(y). Если же уравнение f(x)= y имеет несколько решений x =g1(y), x =g2(y) и т.д., то E(f) равна объединению областей определений функции g1(y), g2(y) и т.д.

Пример 6. Найдите область значений E(y) функции y = 5 2/(1-3x).

найдём обратную функцию x = log3((log5y – 2)/(log5y)) и её область определения D(x):

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+ ∞ ).

Если область определения функции состоит из нескольких промежутков или функция на разных промежутках задана разными формулами, то для нахождения области значений функции надо найти множества значений функции на каждом промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)), где

Найдём сначала множество значений функции f(x) на луче (-∞;1], где она совпадает с выражением 4 x + 9·4 -x + 3. Обозначим t = 4 x . Тогда f(x) = t + 9/t + 3, где 0 2 . На промежутке (0;4] производная g’(t) определена и обращается там в нуль при t = 3. При 0 1 функция f(x) совпадает с выражением 2cos(x-1) 1/2 + 7. Квадратный корень (x-1) 1/2 при x > 1 определён и принимает все положительные значения, поэтому cos(x-1) 1/2 принимает все значения от -1 до 1 включительно, а выражение 2cos(x-1) 1/2 + 7 принимает все значения от 5 до 9 включительно. Следовательно, множеством значений функции f(x) на луче (1;+∞) будет отрезок [5;9].

Теперь, объединив промежутки [9;+∞) и [5;9] – множества значений функции f(f(x)), обозначим t = f(x). Тогда f(f(x)) = f(t), где При указанных t функция f(t) = 2cos(x-1) 1/2 + 7 и она снова принимает все значения от 5 до 9 включительно, т.е. область значений E(fІ) = E(f(f(x))) = [5;9].

Аналогично, обозначив z = f(f(x)), можно найти область значений E(f 3 ) функции f(f(f(x))) = f(z), где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f 3 ) = [2cos8 1/2 + 7; 2cos2 + 7].

Наиболее универсальным методом нахождения множества значений функции является использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8 x —р ≠ 2 x+1 – 2 x выполняется для всех -1 ≤ x x , запишем неравенство в виде р ≠ t 3 – 2t 2 + t. Так как t = 2 x – непрерывная возрастающая функция на R, то при -1 ≤ x -1 ≤ t 2 ↔

0,5 ≤ t 3 – 2t 2 + t при 0,5 ≤ t 2 – 4t + 1. Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке [0,5;4]. Из уравнения f’(t) = 0 найдём критические точки функции t = 1/3, t = 1, первая из которых не принадлежит отрезку [0,5;4], а вторая принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение функции f(t) на отрезке [0,5;4]. Тогда f(t), как непрерывная функция, принимает на отрезке [0,5;4] все значения от 0 до 36 включительно, причём значение 36 принимает только при t = 4, поэтому при 0,5 ≤ t

Данная тема имеет практическое значение. В школьном курсе математики изучается тема “Область значения функции”. Такие задачи обязательно содержатся в заданиях различных математических тестов, в частности в заданиях единого государственного экзамена.
Результаты работы можно использовать на уроках и дополнительных занятиях при подготовке учащихся выпускным и вступительным экзаменам, при самостоятельной подготовке учащихся по данной теме.

  1. Сильвестров В.В. Множество значений функции: Учебное пособие.– Чебоксары, 2004.
  2. Амелькин В.В., Рабцевич В.Л. Задачи с параметрами.– Минск, 1996.
  3. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. – Москва – Харьков, 1998.
  4. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с параметрами: Учебное пособие. 4-е изд., доп., перераб. – М., 2006.
  5. Сильвестров В.В. Неравенства с параметром на едином государственном экзамене // Математика для школьников. 2008. № 2.

Статья написана по материалам сайтов: elhow.ru, zna4enie.ru, xn--i1abbnckbmcl9fb.xn--p1ai.

«

Это интересно:  Кбк ндфл на 2019 год изменения
Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий